Entradas

Mostrando las entradas con la etiqueta Ciencia de Datos

Inteligencia Artificial en la industria: Copilot como asistente técnico, operativo y estratégico

Imagen
🧠 Cómo Microsoft Copilot y los LLM están transformando la industria Desde la oficina hasta la fábrica: el futuro del trabajo con IA ya está aquí La inteligencia artificial generativa está marcando un antes y un después en la forma en que las empresas operan. Modelos de lenguaje de gran escala (LLMs, por sus siglas en inglés), como los desarrollados por OpenAI, han evolucionado de simples asistentes conversacionales a herramientas que realmente entienden el lenguaje humano, el contexto empresarial y los flujos de trabajo complejos. En este escenario, Microsoft Copilot se ha convertido en una de las soluciones más accesibles y poderosas del mercado, al integrar estos modelos directamente en las herramientas que millones de personas ya usan: Word, Excel, Outlook, PowerPoint, Teams, Power Apps y más. 🤖 ¿Qué es Microsoft Copilot y en qué se basa? Copilot es una familia de asistentes inteligentes creada por Microsoft. A diferencia de otras soluciones, Copilot se in...

Análisis de redes sociales con minería de datos: ¿Quién usa qué plataforma?

Imagen
Análisis Demográfico de las Redes Sociales: Un Enfoque desde la Ciencia de Datos En la era digital, las redes sociales se han convertido en una fuente masiva de datos útiles para entender comportamientos humanos, segmentar audiencias y tomar decisiones estratégicas. Desde la perspectiva de la minería de datos y la ciencia de datos (data science), analizar los patrones demográficos de plataformas como Facebook, Instagram o TikTok ofrece un terreno fértil para extraer conocimiento. ¿Quién usa qué red social? Los datos más recientes sobre la distribución por género en redes sociales revelan patrones interesantes: Facebook : Con más de 3 mil millones de usuarios activos mensuales, es la red social más usada del mundo. Tiene una distribución bastante equilibrada: aproximadamente 51% mujeres y 49% hombres. Pinterest : Predominantemente femenina, con alrededor del 76% de sus usuarios identificados como mujeres. Reddit : Mayoritariamente masculina, con 63.6% hombres y 35.1% mujeres...

Dónde Encontrar Datasets para Practicar Python: Mejores Fuentes y Recursos

Imagen
 Obtener datasets interesantes y relevantes es fundamental para practicar con Python. Aquí tienes algunas fuentes donde puedes encontrar datasets de calidad: 1. Kaggle:    - Kaggle ofrece una vasta colección de datasets gratuitos y es conocida por sus competencias de ciencia de datos. Puedes explorar los datasets públicos y usarlos en tus propios desafíos.   https://www.kaggle.com/datasets 2. UCI Machine Learning Repository:    - Este repositorio ofrece una amplia variedad de datasets utilizados en la comunidad académica y de investigación.    - https://archive.ics.uci.edu/ml/index.php 3. Google Dataset Search:    - Una herramienta de búsqueda específica para datasets, que permite encontrar datos de diferentes fuentes y dominios.    - https://datasetsearch.research.google.com/ 4. Data.gov:    - Portal de datos abiertos del gobierno de EE.UU. que ofrece acceso a miles de datasets públicos en diversas áreas como salud, ...

🚀 Mantener este blog funcionando requiere tiempo y café. ¡Puedes contribuir con uno aquí!