Entradas

Mostrando las entradas con la etiqueta Python para visualización.

Data Science & Copilot: Explorando Datos de Salud en México

Imagen
En México, el Instituto Nacional de Estadística y Geografía (INEGI) pone a nuestra disposición una vasta cantidad de datos abiertos sobre salud pública. Estos conjuntos de datos representan una mina de oro para la investigación, pero a menudo, su análisis inicial puede ser un proceso largo y laborioso. ⏳ Aquí es donde entra en juego la tecnología de los Grandes Modelos de Lenguaje (LLMs) . ¿Qué pasaría si una IA pudiera actuar como un verdadero copiloto en este proceso, ayudándonos a explorar estos datos y a descubrir patrones de forma más rápida y eficiente? En este post, vamos a ver cómo una herramienta como Copilot puede acelerar la investigación en salud y la ciencia de datos, y por qué se está convirtiendo en un aliado indispensable para los data scientists. Sobre el dataset Para este ejercicio, vamos a usar un dataset público del INEGI que contiene información valiosa sobre temas de salud. Estos datos son cruciales para entender la demografía, la prevalencia de enfermeda...

📊 Ejemplos de Python para Hacer Gráficas: Visualiza tus Datos con Matplotlib

Imagen
Como hemos visto en otras publicaciones del blog Python es un lenguaje muy amigable y con muchas librarías que permiten apoyarnos para realizar tareas de la manera más ágil. En esta ocasión quiero mostrarles como pueden hacer para mostrar datos en mapas, por ejemplo si quieren representar en el mapa de México la cantidad de universidades por cada estado y obtener una imagen como la siguiente: Tendremos que utilizar las librería   geopandas  matplotlib.pyplot   numpy   pandas  Para este ejemplo necesitamos: Instalar Jupyter ,  https://jupyter.org/install Descargar un mapa de México, yo encontré  un Github de Jon Schleuss  https://github.com/jschleuss/mexican-states Vamos a utilizar el siguiente código import geopandas as gpd import matplotlib.pyplot as plt import numpy as np import pandas as pd direccion = 'tu directorio //mexican-states-master' direccion2 = 'tu directorio\\carpeta\\' shapefile = gpd.read_file(direccion+'\mexica...

🚀 Mantener este blog funcionando requiere tiempo y café. ¡Puedes contribuir con uno aquí!