IA y Software: La Inteligencia Artificial como una aliada del desarrollo de software.

Imagen
¡Bienvenidos a una nueva publicación en Programación para Todos ! Hoy tenemos el honor de contar con la colaboración especial de la Mtra. Yareli Aburto Sánchez, especialista en Ciencias de la Computación y actual esta estudiando su doctorado en esta fascinante área. En esta entrega, Yareli nos comparte una mirada clara y actual sobre cómo la Inteligencia Artificial está revolucionando el desarrollo de software: desde herramientas que agilizan procesos hasta algoritmos que aprenden y evolucionan junto a nosotros. Si te interesa la programación y quieres entender cómo la IA puede convertirse en tu aliada, ¡este artículo es para ti!     En el mundo del desarrollo de software se está experimentando   una transformación digital impulsada por la Inteligencia Artificial (IA).   Desde la automatización de tareas hasta la mejora en la colaboración entre equipos, la incorporación de herramientas basadas en IA ha revolucionado la industria de desarrollo de software. En...

cómo resolver ecuaciones lineales con Python

Quizás se han preguntado cómo puedo resolver una ecuación utilizando Python. Primero es convertir nuestro sistema de ecuaciones a matrices y vectores es decir utilizar Álgebra lineal.

Entonces primer paso nuestra ecuación de ejemplo es:

3x + 2y -5z =8
2x-5y+3z =5
8y+9z =6

Esto convertido a Algebra Lineal se ve así:

[3,2,-5
 2,-5,3
0,8,9]

Vector de resultados de la ecuación
[8,5,6]

En el álgebra lineal tenemos varios métodos que podemos utilizar para resolver este tipo de ecuaciones ,estos métodos son :

  • Regla de Cramer
  • Gauss Jordan
  • Eliminación Gaussiana

En este post vamos hablar de la regla de Cramer la cual consiste en ir remplazando una columna por el vector de resultados y obtener la determinante de la matriz inicial y la matriz con el ventor . 

Ahora vamos a transformar estas reglas a un programa

Primero vamos a hacerlo de manera manual en el programa simulando los pasos
import numpy as np

#Cramer rules
matrix_l = np.array([[3,2,-5],
                   [2,-5,3],
                   [0,8,9]])

vector_b = np.array([8,5,6])
d0 = np.linalg.det(matrix_l)
print(d0)

matrix_2 =np.array([[8,2,-5],
                   [5,-5,3],
                   [6,8,9]])
d1 = np.linalg.det(matrix_2)
print(d1)

matrix_3 =np.array([[3,8,-5],
                   [2,5,3],
                   [0,6,9]])
d2 = np.linalg.det(matrix_3)
print(d2)

matrix_4 =np.array([[3,2,8],
                   [2,-5,5],
                   [0,8,6]])
d3 = np.linalg.det(matrix_4)
print(d3)

x1=d1/d0
x2=d2/d0
x3=d3/d0
print("result x1",x1)
print("result x2",x2)
print("result x3",x3)

Ahora validemos el resultado


Cómo podemos ver la solución del programa ,resuelve nuestro sistema de ecuaciones.

Ahora vamos hacer nuestro programa un poco más automático

def crammer(mat,vect):
    d = np.linalg.det(mat)
    
    mat1= np.array([vect,mat[:,1],mat[:,2]])
    mat2= np.array([mat[:,0],vect,mat[:,2]])
    mat3= np.array([mat[:,0],mat[:,1],vect])
    
    d1 = np.linalg.det(mat1)
    d2 = np.linalg.det(mat2)
    d3 = np.linalg.det(mat3)
    
    x1 =d1/d
    x2 =d2/d
    x3= d3/d
    
    print(x1,x2,x3)

(matrix_l,vector_b)

Les comparto la liga al video en nuestro canal de YouTube para ver la ejecución del programa


Espero les sea de utilidad y nos compartan. 
#programacionparatodos
#programarcobpython

Comentarios

🚀 Mantener este blog funcionando requiere tiempo y café. ¡Puedes contribuir con uno aquí!

Entradas más populares de este blog

Guía Práctica: Ejemplo Completo de ASPX para Desarrolladores Web

Macro de Excel para abrir archivo csv

📊 Automatiza tu trabajo: Convierte tablas de Word a Excel con una macro